A graph-theoretic optimal control problem for terminating discrete event processes

نویسندگان

  • Raja Sengupta
  • Stéphane Lafortune
چکیده

Abstract. Most of the results to date in discrete event supervisory control assume a "zero-or-infinity" structure for the cost of controlling a discrete event system, in the sense that it costs nothing to disable controllable events while uncontrollable events cannot be disabled (i.e., their disablement entails infinite cost). In several applications however, a more refined structure of the control cost becomes necessary in order to quantify the tradeoffs between candidate supervisors. In this paper, we formulate and solve a new optimal control problem for a class of discrete event systems. We assume that the system can be modeled as a finite acylic directed graph, i.e., the system process has a finite set of event trajectories and thus is "terminating." The optimal control problem explicitly considers the cost of control in the objective function. In general terms, this problem involves a tradeoff between the cost of system evolution, which is quantified in terms of a path cost on the event trajectories generated by the system, and the cost of impacting on the external environment, which is quantified as a dynamic cost on control. We also seek a least restrictive solution. An algorithm based on dynamic programming is developed for the solution of this problem. This algorithm is based on a graph-theoretic formulation of the problem. The use of dynamic programming allows for the efficient construction of an "optimal subgraph" (i.e., optimal supervisor) of the given graph (i.e., discrete event system) with respect to the cost structure imposed. We show that this algorithm is of polynomial complexity in the number of vertices of the graph of the system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A discrete-event optimization framework for mixed-speed train timetabling problem

Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...

متن کامل

Optimal Finite-time Control of Positive Linear Discrete-time Systems

This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...

متن کامل

A New Optimal Solution Concept for Fuzzy Optimal Control Problems

In this paper, we propose the new concept of optimal solution for fuzzy variational problems based on the possibility and necessity measures. Inspired by the well–known embedding theorem, we can transform the fuzzy variational problem into a bi–objective variational problem. Then the optimal solutions of fuzzy variational problem can be obtained by solving its corresponding biobjective variatio...

متن کامل

Some results on the complement of a new graph associated to a commutative ring

The rings considered in this article are commutative with identity which are not fields. Let R be a ring. A. Alilou, J. Amjadi and Sheikholeslami introduced and investigated a graph whose vertex set is the set of all nontrivial ideals of R and distinct vertices I, J are joined by an edge in this graph if and only if either ann(I)J = (0) or ann(J)I = (0). They called this graph as a new graph as...

متن کامل

A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions

 In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Event Dynamic Systems

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1992